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While hyperspectral sensors describe plant canopy reflectance in greater detail than multispectral sen-
sors, they also suffer from issues with data redundancy and spectral autocorrelation. Data mining tech-
niques that extract relevant spectral features from hyperspectral data will aid the development of novel
sensors for plant trait estimation. The objectives of this research were to (1) compare broad-band reflec-
tance, narrow-band reflectance, and spectral derivatives for estimation of durum wheat traits in the field
and (2) develop a genetic algorithm to identify the most relevant spectral features for durum wheat trait
estimation. Experiments at Maricopa, Arizona during the winters of 2010–2011 and 2011–2012 tested six
durum wheat cultivars with six split-applied nitrogen (N) fertilization rates. Durum wheat traits, includ-
ing leaf area index, canopy dry weight, and plant N content, were measured from destructive biomass
samples on four occassions in each growing season. Grain yield and grain N content were also measured.
Canopy spectral reflectance data in 701 narrow wavebands from 350 nm to 1050 nm were collected
weekly using a field spectroradiometer. First- and second-order spectral derivatives were calculated
using Savitzky-Golay filtering. The narrow-band data were also used to estimate reflectance in broad
wavebands, as typically collected by two commercial multispectral instruments. Partial least squares
regression (PLSR) compared the ability of each spectral data set to estimate each measured durum wheat
trait. A genetic algorithm was developed to mine narrow-band canopy reflectance and spectral derivative
data for spectral features that improved estimates of durum wheat traits. Multispectral data in 4 broad
bands estimated leaf area index, canopy dry weight, and plant N content with root mean squared errors
of cross validation (RMSECV) between 33.0% and 67.6%, while hyperspectral data in 701 narrow bands
reduced RMSECV to values between 19.3% and 36.3%. Use of the genetic algorithm to identify less than
25 relevant spectral features further reduced RMSECV to values between 15.1% and 30.7%. Grain yield
was optimally estimated from canopy spectral measurements between 110 and 130 days after planting
with RMSECV less than 7.6% using the genetic algorithm approach. The timing corresponded to anthesis
and early grain fill when presence of wheat heads likely affected canopy spectral reflectance. By using a
genetic algorithm to mine hyperspectral reflectance and spectral derivative data, durum wheat traits
were optimally estimated from a subset of relevant canopy spectral features.

Published by Elsevier B.V.
1. Introduction

Hyperspectral reflectance data in the visible (VIS) and near-
infrared (NIR) wavebands offer many opportunities to improve
crop production systems for wheat (Triticum aestivum L.; Triticum
durum Desf.) and other agricultural commodities. For example,
many spectral indices have been developed for detecting nitrogen
(N) concentration in wheat canopies (Chen et al., 2010; Feng et al.,
2008; Fitzgerald et al., 2010; Mahajan et al., 2014; Tilling et al.,
2007). By monitoring plant N status during the growing season,
N fertilizer management can be tailored to the crop need, thus
maintaining N fertility for high photosynthetic yield while mini-
mizing N loss to the environment (Raun et al., 2008). Mid-season
spectral reflectance data has also been used to predict wheat yield
and grain protein content (Li et al., 2012; Serrano et al., 2000; Xue
et al., 2007), both of which are economically important to wheat
growers. Higher protein in wheat grain garners a premium price
for the grower, determines the end-product to be made from the
grain, and is dependent on water and N management (Ottman
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et al., 2000). Aparicio et al. (2002) developed spectral indices to
estimate leaf area index (LAI) and biomass for use as selection cri-
teria in wheat breeding programs. Spectral reflectance sensors and
other sensing instrumentation are increasingly important for field-
based crop improvement and genetics research, as plant scientists
search for links between desirable plant traits and genes that con-
trol those traits (Araus and Cairns, 2014; Thorp et al., 2015; White
et al., 2012). Spectral reflectance data also integrate with crop
growth and radiative transfer models (Haboudane et al., 2004;
Thorp et al., 2012), which can assist retrievals of crop biophysical
variables for a variety of remote sensing applications. Rapid diag-
nostic tools are needed for crop monitoring and decision support
in diverse agricultural applications, and hyperspectral data from
remote and proximal sensing provide ample information for devel-
opment of such tools.

Modern radiometric instruments provide hyperspectral reflec-
tance data in hundreds or thousands of narrow wavebands, thus
a major challenge is to intelligently subset the data by identifying
spectral characteristics that are meaningful for a given application.
Many researchers have calculated narrow-band spectral reflec-
tance indices by ratioing reflectance data in key wavebands or
incorporating narrow-band spectral data into the widely known
Normalized Difference Vegetation Index (NDVI) equation (Chen
et al., 2010; Feng et al., 2008; Hansen and Schjoerring, 2003;
Thorp et al., 2004). The spectral index approach extends from an
earlier era, when radiometric measurements were available in only
a few broad wavebands (Bannari et al., 1995). With the advent of
hyperspectral systems, there is opportunity to both refine older
spectral indices and develop novel data analysis techniques that
exploit the higher spectral resolution and nearly contiguous nature
of hyperspectral data. For operational purposes, simpler radiomet-
ric instruments could be developed based on the findings of hyper-
spectral data analyses. Alternatively, the analyses may reveal that
narrow-band, contiguous reflectance data from a hyperspectral
sensor is preferable or offers greater accuracy for a given sensing
application.

Multicollinearity among neighboring wavebands is a persistent
problem for hyperspectral data analysis. Statistical procedures
such as principal component regression (PCR) and partial least
squares regression (PLSR) reduce multicollinearity and dimension-
ality by decomposing the hyperspectral data into a subset of inde-
pendent factors, with which crop biophysical traits can be
regressed. Rather than using key wavebands for calculation of
spectral indices, these methods incorporate full-spectrum reflec-
tance data into statistical models for crop trait estimation. For
example, Ecarnot et al. (2013) developed PLSR models to estimate
durum wheat leaf N content (r2 ¼ 0:95) and leaf mass per unit area
(r2 ¼ 0:94) from spectral reflectance data measured between 400
and 2500 nm with a leaf clip. As demonstrated by Fu et al.
(2014), PLSR analysis can incorporate not only spectral reflectance
data but also spectral indices and other spectral metrics related to
band depth and continuum-removed spectra. Hansen and
Schjoerring (2003) compared estimates of wheat biophysical traits
using (1) linear regression on narrow-band NDVI with optimal
wavebands and (2) PLSR with all wavebands from 400 to
900 nm. The NDVI approach better estimated LAI and chlorophyll
concentration, while the PLSR approach better estimated green
biomass weight and leaf N concentration. In a similar comparison,
Thorp et al. (2015) reported that spectral reflectance data from 400
to 2400 nm, analyzed with PLSR, explained variability in cotton
(Gossypium barbadense L.) leaf water content, specific leaf mass,
leaf chlorophyll aþ b content, and LAI better than linear correla-
tions with common vegetation indices. Of the myriad techniques
for analysis of hyperspectral data, PLSR has become highly popular
in recent years (Fu et al., 2014; Kaleita et al., 2006; Li et al., 2012;
Thorp et al., 2011). However, PLSR usually emphasizes full-
spectrum, contiguous data, and efforts to identify and subset rele-
vant spectral features are often ignored.

Another option for analysis of hyperspectral reflectance data is
the computation of spectral derivatives, which quantify slope, cur-
vature and higher-order aspects of reflectance spectra. Peaks in
derivative spectra can identify the ‘‘red edge” position between
680 and 750 nm in crop reflectance data, which results from the
contrast of red light absorption by plant chlorophyll and NIR scat-
tering by plant biomass (Demetriades Shah et al., 1990; Horler
et al., 1983). Tsai and Philpot (1998) tested algorithms for reflec-
tance data smoothing and derivative computation, including
methods based on filter convolution (Savitzky and Golay, 1964)
or finite divided difference approximation. Thorp et al. (2004)
developed first- and second-derivative spectral indices by inte-
grating derivative spectra within the range of derivative spectral
peaks. Second derivative indices were particularly useful for esti-
mating soybean (Glycine max (L.) Merr.) canopy cover (r < 0:89).
Chen et al. (2010) developed the Double-peak Canopy Nitrogen
Index (DCNI), which contrasted first derivative spectra at two loca-
tions near the red edge to estimate plant N concentration in maize
(Zea mays L.) and wheat (r2 ¼ 0:64). In similar research, Feng et al.
(2014) analyzed 20 spectral derivative features near the red edge
position and developed a novel index to estimate wheat leaf N
concentration (r2 < 0:85). Spectral derivative analysis can reveal
spectral features that may not be apparent in reflectance data
alone.

To overcome the multidimensional nature of hyperspectral
data, genetic algorithms have been developed to reduce dimen-
sionality and mine the data for spectral features that correlate to
crop traits (Leardi, 2000). For example, Yao and Tian (2003) com-
bined a genetic algorithm with PCR to reduce the dimensionality
of hyperspectral images from 60 wavebands to less than 26 wave-
bands. The genetic algorithm removed wavebands that contributed
little to PCR models for maize leaf chlorophyll content, plant pop-
ulation, and hybrid, which improved PCR model performance com-
pared to models based on the full spectrum, 60-band data.
Similarly, Kaleita et al. (2006) combined a genetic algorithm with
PLSR to identify spectral features predictive of tasseling and pollen
shed in maize. Their algorithm (1) incorporated operators for the
maximum, minimum, and median reflectance values and the slope
and curvature of reflectance data over a range of wavebands and
(2) identified the spectral operators that were most influential
for PLSR-based estimation of maize canopy traits. Among the var-
ious hyperspectral data analysis approaches, genetic algorithms
uniquely offer the ability to mine hyperspectral data sets for spec-
tral features relevant to a given sensing application (Kaleita et al.,
2006). More studies should incorporate this approach to elucidate
meaningful relationships between spectral reflectance data and
agricultural crop characteristics.

While there is a growing body of literature on myraid analysis
techniques for hyperspectral data, few studies comprehensively
evaluate, compare, or integrate multiple approaches, likely because
the learning curve can be steep and advanced computational skills
are often necessary. Notable examples that do contrast multiple
techniques include Fu et al. (2014),Kaleita et al. (2006), and
Thorp et al. (2015). Literature is also now saturated with multiple
examples of PLSR modeling to estimate a variety of crop traits from
spectral data. While PLSR is a valid and useful analysis approach, it
is less informative when treated solely as a black box statistical
model. Hyperspectral data analyses should always push toward
better understanding of the mechanisms for spectral reflectance
from crop canopies and identification of the important wavebands
or spectral features that contribute to crop trait estimates. Genetic
algorithms, combined with PLSR, have potential for great advance-
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ment toward the latter goals, but investigations using this
approach are far fewer than those using PLSR alone.

The overall objective of this study was to investigate canopy
spectral reflectance data and related data analysis techniques for
estimating durum wheat LAI, canopy dry weight, plant N content,
grain yield, and grain N content. Specific objectives were to (1)
use PLSR to compare the ability of different spectral data sets,
including broad-band canopy reflectance data, narrow-band
canopy spectra, and derivative spectra, to explain variability in
durum wheat traits and (2) combine PLSR with a genetic algorithm
to reduce hyperspectral data dimensionality and identify relevant
spectral features for estimating durum wheat canopy traits, grain
yield, and grain quality characteristics.
2. Materials and methods

2.1. Field experiments

Durum wheat experiments were conducted at the University of
Arizona’s Maricopa Agricultural Center (MAC) near Maricopa, Ari-
zona (33.068� N, 111.971� W, 360 m above sea level) over the win-
ters of 2010–2011 and 2011–2012 (Liang et al., 2014). The soil
texture at the site was predominantly sandy loam and sandy clay
loam, as determined by textural analysis of soil samples. A split-
plot experimental design was used with four replications of six
durum wheat cultivars (Duraking, Topper, Kronos, Havasu, Orita,
and Ocotillo) as main-plot treatments and five split-applied N fer-
tilizer rates as sub-plot treatments. Based on 2010–2011 experi-
mental results, a sixth N rate was added in 2011–2012. Durum
wheat was planted on 15 December 2010 and 9 December 2011
with a row spacing of 19.05 cm. Using a portable fertilizer sprea-
der, urea N fertilizer was split-applied according to the rate and
timing schedule reported in Table 1. Seasonal fertilization amounts
ranged from 0 to 403 kg N ha�1. A sudangrass (Sorghum bicolor (L.)
Moench) cover crop was grown in the summers before durum
wheat planting to remove excess N from the soil profile. In both
seasons, the entire experimental area was flood irrigated to avoid
water deficits. Seasonal irrigation amounted to 840 mm in 2010–
2011 and 710 mm in 2011–2012, applied during nine irrigation
events from early December to the end of April. Precipitation
amounted to 29 and 41 mm in the 2010–2011 and 2011–2012
growing seasons, respectively. Further details about the field inves-
tigation are provided by Liang et al. (2014).
2.2. Biomass and yield measurements

Durum wheat plants were destructively sampled from all
experimental plots on four dates in 2011 (January 18, February
24, March 22, and April 7) and 2012 (January 10, February 16,
March 13, and April 4). Plants in two 0.5 m row lengths within each
plot were cut at the soil surface and bagged. Within 24 h, plants
were dissected into component plant parts, including leaves,
stems, and spikes. The total leaf area of each sample was measured
Table 1
Split-applied nitrogen (N) fertilizer rates at different durum wheat growth stages in the 2

Growth Application date

stage Season 1 Season 2 0

Preplant N/A 08 Dec 2011 0
Feekes 1–2 18 Jan 2011 11 Jan 2012 0
Feekes 5 09 Mar 2011 28 Feb 2012 0
Feekes 10 24 Mar 2011 13 Mar 2012 0
Feekes 10.5 11 Apr 2011 09 Apr 2012 0

a The 403 kg N ha�1 rate was used in the 2011–2012 growing season only.
on an area meter (model 3100, Li-Cor, Lincoln, Nebraska) and used
to calculate leaf area index (LAI). Samples were oven-dried at 65�C
with ventilation until constant weight was achieved. Canopy dry
weight per hectare (‘‘canopy weight” hereafter) was calculated
from oven-dried biomass weight measurements. The dried bio-
mass was then finely ground, and samples were prepared for anal-
ysis of plant N content using a Carlo Erba elemental analyzer
(model NA1500 N/C, Carlo Erba Instruments, Milan, Italy). Mature
durum wheat was harvested with a plot combine on 2 June 2011
and 24 May 2012. Grain samples were oven dried to estimate
dry grain weight per hectare (‘‘yield” hereafter) for each plot, and
grain N content was measured with the Carlo Erba elemental
analyzer.

Hierarchical linear mixed modeling was used to assess effects of
cultivar and N fertilizer rate on the biomass and yield measure-
ments. Cultivar, N fertilizer rate, and their interaction were mod-
eled as fixed effects. Block and its interaction with cultivar were
modeled as random effects. Hierarchical tests required fitting ran-
dom effects with (1) cultivar fixed effects alone, (2) N fertilizer rate
fixed effects alone, (3) both cultivar and N fertilizer rate fixed
effects, and (4) water and N fertilizer fixed effects and their inter-
action. Likelihood ratio tests were used to compare these hierarchi-
cal models, which showed whether the measurement was different
among cultivar, N fertilizer rate, or their interaction. Linear mixed
models were computed using the ‘‘lme4” package within the R Pro-
ject for Statistical Computing software (http://www.r-project.org).

2.3. Radiometric measurements

Ground-based radiometric measurements were collected
weekly over each experimental plot using a portable field spectro-
radiometer (GER 1500, Spectra Vista Corp., Poughkeepsie, New
York). Radiometric information was reported in 512 narrow wave-
bands from 268 to 1095 nm with bandwidth ranging from 1.5 to
2.1 nm. The instrument was equipped with an 18� field-of-view
fiber optic. A wand constructed from PVC tubing was used to posi-
tion the fiber optic at a nadir view angle approximately 1.8 m
above the soil surface. Spectral measurements typically occurred
in the morning around the time of a 57� solar zenith angle, which
insured consistent canopy bidirectional reflectance effects over the
entire growing season. Three spectral measurements were col-
lected over each plot, which was limited by the size of the instru-
ment’s onboard memory and the need to measure more than 100
plots at optimum solar zenith angle. Frequent radiometric observa-
tions of a calibrated, 0.6 m2, 99% Spectralon panel (Labsphere, Inc.,
North Sutton, New Hampshire) were used to characterize incoming
solar irradiance throughout the data collection period. Canopy
reflectance factors in each waveband were computed as the ratio
of the canopy radiance over the corresponding time-interpolated
value for Spectralon panel radiance. Using spline interpolation,
reflectance factors were adjusted to integer wavelength values
with spectral resolution of 1 nm. Due to instrument sensitivity
issues at the limits of the detector, subsequent spectral analyses
were based on 701 reflectance factors from 350 to 1050 nm. Radio-
010–2011 and 2011–2012 growing seasons at Maricopa, Arizona, USA.

N rate (kg N ha�1)

72 124 186 269 403a

0 0 0 0 90
17 34 62 90 112
11 22 34 45 56
22 34 45 67 67
22 34 45 67 78

http://www.r-project.org
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metric measurements over each experimental plot were averaged
to estimate the canopy spectral reflectance on each measurement
date.

2.4. Broad-band calculations

To compare the narrow-band spectral data with information
typically collected by broad-band, multispectral radiometers, the
GER1500 data were averaged within the wavebands measured by
two commercial, hand-held instruments (MSR5 and MSR87, Crop-
scan, Inc., Rochester, MN). Averaged GER1500 spectral reflectance
data were used to mimic four wavebands from the Cropscan
MSR5 instrument: 450–520 nm, 520–600 nm, 630–690 nm, and
760–900 nm. A fifth waveband measured by the Cropscan MSR5
was outside the spectral range of the GER1500 instrument. Simi-
larly, GER1500 data was used to estimate eight wavebands from
the Cropscan MSR87 instrument. Band widths were each 9 nm
with band centers at 460, 510, 560, 610, 660, 710, 760, and
810 nm. Cropscan instruments were not used to collect radiomet-
ric data in the field experiments, but data from the GER1500
instrument was used to estimate reflectance data typically mea-
sured by Cropscan.

2.5. Derivative calculations

Derivative spectra were calculated using Savitzky and Golay
(1964) smoothing and filtering on the GER1500 spectral reflec-
tance measurements. The method convolved shaped filters with
size 2mþ 1 over the reflectance data to calculate spectral deriva-
tives while simultaneously smoothing the noise introduced by
derivative calculations. Savitzky and Golay (1964) provided tables
of coefficients for various filter sizes, but Madden (1978) later
developed polynomial equations that provide Savitzky and Golay
(1964) coefficients for filters of various sizes and for up to fifth-
order derivatives. In this study, the second-order polynomial equa-
tions of Madden (1978) were used to derive filter coefficients for
calculation of first- and second-order spectral derivatives. A value
of 3 was used for the m parameter in these equations, which pro-
vided a total filter size of 7 (2mþ 1). Thus, spectral derivatives
were calculated based on spectral reflectance data within a band-
width of 7 nm. A Python script (http://www.python.org) was
developed to conduct the spline interpolation (discussed above),
calculate filter coefficients from the Madden (1978) equations,
and obtain first- and second-order spectral derivatives by filter
convolution.

2.6. PLSR modeling

PLSR was used to compare the ability of different spectral data
sets to estimate durum wheat traits: LAI, canopy weight, plant N
content, grain yield, and grain N content. Thorp et al. (2011) pro-
vided the details on the PLSR methodology used in the present
study. Briefly, if Y is an n� 1 vector of responses (plant measure-
ments) and X is an n-observation by p-variable matrix of predictors
(a set of spectral metrics in pwavebands), PLSR aims to decompose
X into a set of A orthogonal scores such that the covariance with
corresponding Y scores is maximized. The X-weight and Y-
loading vectors that result from the decomposition are used to esti-
mate the vector of regression coefficients, bPLS , such that

Y ¼ XbPLS þ � ð1Þ
where � is an n� 1 vector of error terms.

The ‘‘pls” package (Mevik and Wehrens, 2007) within the R Pro-
ject for Statistical Computing (http://www.r-project.org) was used
for PLSR in this study. PLSR models were developed individually for
each plant trait regressed with different spectral data sets, includ-
ing the two broad-band data sets based on wavebands from Crop-
scan instruments, the narrow-band reflectance data measured
with the GER1500 instrument, first-order derivative spectra,
second-order derivative spectra, and a combination of narrow-
band reflectance data with first- and second-order spectral deriva-
tives. To choose the appropriate number of factors for each model
(A from above), leave-one-out cross validation was used to test
model predictions for independent data. Results were reported
for models with the number of factors that minimized the root
mean squared error of cross validation (RMSECV). Because PLSR
decomposed the spectral data sets to a set of explanatory factors,
the PLSR goodness-of-fit statistics (i.e., RMSECV) summarized the
information content of different spectral data sets with regard to
estimating plant traits, and thus the predictive capability of each
spectral data set could be compared.

2.7. Genetic algorithm

Following the example of Kaleita et al. (2006), a genetic algo-
rithm was developed to (1) subsample the narrow-band reflec-
tance data and first- and second-order derivative spectra, (2)
identify up to 25 spectral features computed as the mean of spec-
tral data over a range of wavelengths, (3) assess the goodness-of-fit
of the spectral features to estimate plant traits via PLSR, and (4)
iterate the process to identify the optimum set of spectral features.
A genetic algorithm is a computational method designed to solve
problems by mimicking the process of natural selection for biolog-
ical species evolution. In this study, the genetic algorithm was pro-
grammed to establish a population of 5000 individuals. Each
individual was programmatically characterized by a single chro-
mosome with 25 genes. Each gene characterized a unique spectral
feature on the chromosome and was comprised of three genetic
loci that could take the value of several pre-defined alleles. At
the first genetic locus, an integer operator indicated whether the
gene represented (1) canopy spectral reflectance, (2) the first-
order derivative of canopy spectral reflectance (i.e., slope), (3) the
second-order derivative of canopy spectral reflectance (i.e., curva-
ture), or (4) no spectral data set. In the latter case, the gene was
‘‘turned off” and had no effect on the individual’s goodness-of-fit.
The second genetic locus contained an integer value that repre-
sented the starting wavelength for the spectral feature. It could
range from 350 to 1050 nm. The third genetic locus contained an
integer value that defined the bandwidth of the spectral feature.
It could range from 1 to 200 nm with the caveat that no spectral
feature could extend beyond 1050 nm.

The fitness of each individual was calculated as the minimum
RMSECV from PLSR. Cross-validation was accomplished using ran-
dom segment selection, where the spectral data set was divided
into 10 segments, selected randomly. PLSR models were iteratively
calibrated using 9 segments and evaluated for the one left out.
When the genetic algorithm finished iterating, the final individuals
in the population were reevaluated using leave-one-out cross val-
idation. This permitted better comparisons to PLSR models
described in the previous section. Because leave-one-out cross val-
idation was more computationally expensive, its use during the
iteration of the genetic algorithm could not be justified.

The survival rate of individuals in a generation was 50%. Thus, at
each new generation of the population, individuals were sorted by
fitness score, and the bottom half of individuals with poorest fit-
ness were eliminated. New individuals were created from the
remaining individuals until the population again contained 5000
individuals. The crossover rate was 90%. Thus, 10% of new individ-
uals were created via asexual reproduction and existed as the iden-
tical twin or genetic duplicate of another individual. Otherwise,
new individuals were created via a mating tournament between
two subsets of eight individuals, randomly selected from the pop-

http://www.python.org
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ulation. Within each subset, the fittest individual won the mating
tournament 90% of the time. Otherwise, a random individual was
chosen for mating. Mating occurred via a two-point crossover
method, where the chromosome of the new individual was sec-
tioned in two random locations. Genes from one mate were copied
to the two outer sections, and genes from the other mate were cop-
ied to the middle section.

The genes of each new individual were subjected to a mutation
process. The mutation rate varied with each generation, generally
with decreasing mutation rates as the population matured. If the
fitness score of the fittest individual in the ðnþ 1Þth generation
was identical to that for the nth generation, the mutation rate
was reduced by 0.1%. If a new fittest individual was found in the
ðnþ 1Þth generation, the mutation rate was increased by 0.1%. Lim-
its on the mutation rate were between 0% and 100%, and the initial
mutation rate was 100%. According to the mutation rate, the genes
of a new individual’s chromosome were modified on a gene-by-
gene basis. If a gene was selected for mutation, one of the its three
loci was randomly selected for modification. If the first locus was
selected, the gene was either switched off or switched to represent
a different spectral data set type. If the second or third locus was
chosen, the starting waveband or bandwidth, respectively, was
adjusted by a value between ±10 nm, while preserving the limits
on these values. Following mutation, the individual’s chromosome
was checked for genetic duplication, and any duplicates were
replaced with a new gene, chosen randomly until uniqueness
was achieved. Duplicate genes on a chromosome were undesirable,
because it would lead to redundant information in the PLSR model
for that individual.

The genetic algorithm terminated when either (1) genetic diver-
sity was sufficiently reduced (i.e., more than half of the population
was comprised of identical twins) or (2) more than 100 generations
had passed without finding a new fittest individual. Typically, the
Fig. 1. Spectral measurements of durumwheat on 118 days after planting in the 2010–20
first derivative of canopy spectral reflectance (FDR), and (c) the second derivative of can

Fig. 2. Spectral measurements of durum wheat on 111 days after planting in the 2011–2
the first derivative of canopy spectral reflectance (FDR), and (c) the second derivative o
algorithm iterated over 1100–1400 generations. Genes from the
overall fittest individual were further analyzed to identify the spec-
tral features that led to optimum prediction of plant traits.

The genetic algorithm approach combined with PLSR was used
to solve for the optimum spectral features to estimate each of the
durum wheat plant traits individually: LAI, canopy weight, plant N
content, grain yield, and grain N content. In addition, the approach
was used to evaluate different spectral data sets: the narrow-band
reflectance data, first-order derivative spectra, second-order
derivative spectra, and a combination of these three data sets.
The genetic algorithm was developed in the Python scripting lan-
guage, using the ‘‘rpy2” package to access R statistical software
functions for PLSR calculations.
3. Results and discussion

3.1. Field data

Hyperspectral measurements of the wheat canopy followed
typical patterns for spectral reflectance of vegetation in both the
2010–2011 (Fig. 1a) and 2011–2012 (Fig. 2a) growing seasons.
Generally, scattering of near-infrared radiation led to greater vari-
ability in reflectance from 760 to 1050 nm as compared to the vis-
ible spectrum (400 to 700 nm) where chlorophyll absorbed
radiation. The plotted reflectance data was collected over all culti-
var and N fertilization treatments at 118 days after planting in the
2010–2011 growing season (12 April 2011) and at 111 days after
planting in the 2011–2012 growing season (31 March 2012). Data
collected on these dates best predicted durum wheat yield (dis-
cussed later). Plots of the first derivative of canopy spectral reflec-
tance (Figs. 1 and 2b) demonstrated positive peaks at the red edge
location (735 nm), highlighting the upward slope of reflectance
11 growing season (April 12, 2011), including (a) canopy spectral reflectance, (b) the
opy spectral reflectance (SDR).

012 growing season (March 31, 2012), including (a) canopy spectral reflectance, (b)
f canopy spectral reflectance (SDR).



6 K.R. Thorp et al. / Computers and Electronics in Agriculture 136 (2017) 1–12
between the red and near-infrared wavelengths. Additionally, neg-
ative first derivative peaks were associated with the decrease in
reflectance data between 890 and 970 nm, due to the water
absorption band centered at 970 nm. Plots of the second derivative
of canopy spectral reflectance (Figs. 1 and 2c) demonstrated posi-
tive and negative peaks at approximately 720 and 750 nm, respec-
tively, corresponding to wavelengths of maximum curvature in the
reflectance data. Second derivative data were often noisy above
900 nm, due to magnification of noise in the original reflectance
data through the differentiation process. These data remained in
the analysis, because the PLSR and genetic algorithm analysis
methods could potentially reject noise.

In the 2010–2011 season, average measured LAI, canopy
weight, and plant N content on each measurement date ranged
from 0.16 to 2.85 cm2 cm�2, 0.11 to 7.33 Mg ha�1, and 0.81% to
3.47%, respectively (Table 2). Average measured yield was
4.75 Mg ha�1 in 2010–2011, and average grain N concentration
was 2.23%. In the 2011–2012 season, average measured LAI,
canopy weight, and plant N content ranged from 0.17 to 3.80 cm2 -
cm�2, 0.10 to 9.75 Mg ha�1, and 1.12% to 4.50%, respectively. Aver-
age measured yield was 5.45 Mg ha�1 in 2011–2012, and average
grain N concentration was 2.20%. Hierarchical linear mixed model-
ing revealed differences in plant measurements among cultivars on
several measurement dates (p < 0:05, Table 2). Early season plant
N content was different among cultivars in both growing seasons.
All plant measurements were different among N fertilization rates
on all dates, except measurements collected at 34 DAP in 2010–
2011. Most of the variability in the measured plant data was due
to N fertilization rates, where higher N rates generally led to higher
plant measurements. The interaction of cultivar and N fertilization
rate was significant for early season plant N content in both sea-
sons years (p < 0:05). However, interaction results were inconsis-
tent among growing seasons for all other measurements. The
Table 2
Chi squared (v2) statistics and probability (p) values from hierarchical linear mixed mo
interaction on leaf area index (LAI, cm2 cm�2), canopy weight (CWT, Mg ha�1), and plant N
2011–2012 (bottom section) and final grain yield (YLD, Mg ha�1) and grain N content (GN
(p < 0:05).

DAP Mean StDev Cultivar

v2

LAI 34 0.16 0.05 10.4 0.
CWT 34 0.11 0.03 9.5 0.
PNC 34 3.47 0.81 12.6 0.0
LAI 71 1.30 0.64 6.7 0.
CWT 71 1.21 0.55 1.5 0.
PNC 71 2.47 0.56 10.3 0.
LAI 97 2.85 1.50 8.8 0.
CWT 97 4.38 1.62 5.6 0.
PNC 97 1.25 0.43 4.2 0.
LAI 113 2.08 1.13 20.8 0.0
CWT 113 7.33 2.68 8.7 0.
PNC 113 0.81 0.36 10.7 0.
YLD 178 4.75 2.09 2.4 0.
GNC 178 2.23 0.40 8.1 0.

LAI 32 0.17 0.05 29.5 0.0
CWT 32 0.10 0.03 26.9 0.0
PNC 32 4.50 0.54 15.0 0.0
LAI 69 2.25 1.00 12.1 0.0
CWT 69 1.58 0.62 5.4 0.
PNC 69 2.92 0.70 39.9 0.0
LAI 95 3.80 2.11 4.6 0.
CWT 95 5.22 2.17 7.5 0.
PNC 95 1.73 0.43 14.5 0.0
LAI 117 2.94 1.86 7.4 0.
CWT 117 9.75 3.67 7.7 0.
PNC 117 1.12 0.41 5.1 0.
YLD 167 5.45 2.44 28.7 0.0
GNC 167 2.20 0.30 28.4 0.0
results highlight differences in plant measurements among exper-
imental treatments, which makes the data set useful for analysis of
proximal hyperspectral data to estimate durum wheat traits.

3.2. Trait estimation

Minimum RMSECV from PLSR demonstrated the ability of dif-
ferent spectral data sets to estimate LAI, canopy weight, and plant
N content on four dates during the 2010–2011 and 2011–2012
growing seasons (Table 3). Estimates were poorest (33.0% 6
RMSECV6 67.6%) when using spectral data from four broad wave-
bands that mimicked the information content of common multi-
spectral radiometers. Better estimates (21.1% 6 RMSECV 6 39.1%)
were obtained when using a spectral data set based on eight 9-
nm wavebands in the VIS-NIR spectrum. However, in both growing
seasons, neither of these broad-band spectral data sets could esti-
mate LAI, canopy weight, or plant N content better than the con-
tiguous narrow-band data set collected with the VIS-NIR
spectroradiometer (19.3% 6 RMSECV 6 36.3%). Thus, in spite of
multicollinearity issues with the hyperspectral reflectance data,
the information content for estimating wheat canopy traits was
superior to the content typically obtained from an 8-band multi-
spectral radiometer.

For full-spectrum data with 701 wavebands, the PLSR analysis
demonstrated little advantage to using spectral derivative data as
compared to the narrow-band reflectance data set, because
RMSECV was generally lower for the latter. Two exceptions were
the RMSECV for LAI and plant N content in the 2010–2011 growing
season when combining narrow-band spectral reflectance with the
first and second derivative data sets, which were slightly lower as
compared to narrow-band reflectance alone. However, the PLSR
results generally showed that the narrow-band data alone pro-
vided the most information content to estimate durum wheat
deling demonstrate the effects of cultivar, nitrogen (N) fertilization rate, and their
content (PNC, %) on four dates after planting (DAP) in 2010–2011 (top section) and
C, %) in each season. Significance codes are ‘‘⁄⁄⁄” (p < 0:001), ‘‘⁄⁄” (p < 0:01), and ‘‘⁄”

N rate Interaction

p v2 p v2 p

0644 4.7 0.3146 16.1 0.2449
0907 4.8 0.3119 21.5 0.0639
277⁄ 2.3 0.6720 36.6 0.0005⁄⁄⁄

2452 105.3 0.0000⁄⁄⁄ 18.2 0.5756
9072 99.6 0.0000⁄⁄⁄ 21.1 0.3890
0682 136.1 0.0000⁄⁄⁄ 25.1 0.1975
1180 187.2 0.0000⁄⁄⁄ 24.1 0.2361
3482 195.5 0.0000⁄⁄⁄ 33.1 0.0332⁄

5197 12.5 0.0137⁄ 20.4 0.4345
009⁄⁄⁄ 218.2 0.0000⁄⁄⁄ 20.8 0.4068
1208 220.4 0.0000⁄⁄⁄ 12.2 0.9095
0580 40.8 0.0000⁄⁄⁄ 27.8 0.1146
7949 268.5 0.0000⁄⁄⁄ 20.3 0.4407
1488 106.0 0.0000⁄⁄⁄ 21.4 0.3762

000⁄⁄⁄ 40.9 0.0000⁄⁄⁄ 51.6 0.0014⁄⁄

001⁄⁄⁄ 53.2 0.0000⁄⁄⁄ 48.6 0.0032⁄⁄

103⁄ 135.9 0.0000⁄⁄⁄ 43.0 0.0139⁄

341⁄ 174.5 0.0000⁄⁄⁄ 32.5 0.1436
3635 157.4 0.0000⁄⁄⁄ 24.1 0.5161
000⁄⁄⁄ 185.0 0.0000⁄⁄⁄ 38.2 0.0441⁄

4720 183.8 0.0000⁄⁄⁄ 21.4 0.6729
1848 147.5 0.0000⁄⁄⁄ 26.2 0.3951
129⁄ 117.2 0.0000⁄⁄⁄ 25.7 0.4231
1900 226.6 0.0000⁄⁄⁄ 43.1 0.0138⁄

1721 166.3 0.0000⁄⁄⁄ 24.1 0.5159
4093 43.6 0.0000⁄⁄⁄ 26.4 0.3844
000⁄⁄⁄ 462.4 0.0000⁄⁄⁄ 35.9 0.2121
000⁄⁄⁄ 174.5 0.0000⁄⁄⁄ 63.0 0.0004⁄⁄⁄



Table 3
Minimum root mean squared error of cross validation (RMSECV, %) from partial least squares regression (PLSR) and PLSR combined with a genetic algorithm (GA) used to estimate
leaf area index (LAI), canopy weight (CWT) and plant nitrogen content (PNC) on four dates after planting in the 2010–2011 and 2011–2012 durum wheat growing seasons. The
results demonstrate ability to estimate plant growth metrics from different spectral data sets, each containing n variables derived from narrow-band canopy spectral reflectance
as measured with a field spectroradiometer.a

Method Data set n 2011 2011 2011 2012 2012 2012
LAI CWT PNC LAI CWT PNC

PLSR BBR 4 40.5 43.4 44.1 43.0 67.6 33.0
PLSR BBR 8 37.8 26.0 28.5 39.1 33.1 21.1
PLSR NBR 701 34.2 24.8 28.4 36.3 31.8 19.3
PLSR FDR 701 35.2 25.2 28.6 38.9 32.7 19.4
PLSR SDR 701 34.8 29.1 31.6 39.6 44.3 23.2
PLSR NBR,FDR,SDR 2103 33.9 25.1 28.2 39.0 33.6 19.8

PLSR-GA NBR <25 29.5 21.3 23.0 30.7 27.6 16.3
PLSR-GA FDR <25 28.5 22.0 23.0 30.1 28.4 16.2
PLSR-GA SDR <25 26.3 20.8 21.4 30.0 27.6 16.4
PLSR-GA NBR,FDR,SDR <25 26.1 20.3 21.2 28.4 26.0 15.1

a Broad-band reflectance, BBR; canopy weight, CWT; first derivative of narrow-band reflectance, FDR; genetic algorithm, GA; leaf area index, LAI; narrow-band reflectance,
NBR; partial least squares regression, PLSR; plant nitrogen content, PNC; second derivative of narrow-band reflectance, SDR.
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LAI, canopy weight, and plant N content. There was little advantage
to use of full-spectrum derivative data, an important result consid-
ering several past efforts to develop derivative methods for spec-
tral data analysis (Demetriades Shah et al., 1990; Thorp et al.,
2004; Tsai and Philpot, 1998).

By combining a genetic algorithm with PLSR to extract relevant
features from the spectral data set, the RMSECVs for estimates of
LAI, canopy weight, and plant N content were substantially
reduced (15.1% 6 RMSECV 6 30.7%) as compared to estimates from
PLSR alone (19.3% 6 RMSECV 6 67.6%). As compared to PLSR esti-
mates based on four broad spectral bands, PLSR with genetic algo-
rithm on narrow-band data could often reduce the RMSECV by
more than half. Thus, the wavebands selected by the genetic algo-
rithm were much better at estimating durum wheat traits as com-
pared to the wavebands selected for inclusion on two commercial
broad-band multispectral sensors. The genetic algorithm was also
able to select relevant features within the derivative spectra, which
Fig. 3. Minimum root mean squared error of cross validation (RMSECV) from partial leas
reflectance measured on (a) 19 dates after planting in 2010–2011 and (b) 17 dates after
reflectance values (PLSR1), PLSR with 701 narrow-band reflectance values (PLSR2), and
features from narrow-band reflectance data (PLSR-GA1) and narrow-band reflectance co
led to slightly better estimation of the three canopy traits as com-
pared to the features selected from the narrow-band reflectance
data. With the exception of plant N content in 2012, the second
derivative features selected by the genetic algorithm could esti-
mate canopy traits better than the selected first derivative features
and reflectance features. However, the best overall RMSECV for the
three canopy traits (15.1% 6 RMSECV6 28.4%) was obtained when
using PLSR with the genetic algorithm to select features from the
combination of narrow-band reflectance and derivative data. The
genetic algorithm permitted rejection of spectral information that
contributed little to plant trait estimation, thereby allowing the
development of PLSR models that incorporated spectral features
at the wavelengths of greatest importance.

The PLSR modeling results demonstrated the optimum time for
estimating durum wheat yield from in-season canopy spectral
reflectance data (Fig. 3). For both growing seasons, yield estimates
improved rapidly with each data collection outing until 70 days
t squares regression (PLSR) used to estimate durum wheat grain yield from canopy
planting in 2011–2012. Yield estimates were based on PLSR with four broad-band
PLSR combined with a genetic algorithm to identify relevant spectral reflectance
mbined with first and second spectral derivative data (PLSR-GA2).
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after planting, roughly the third week of February during the wheat
tillering phase. Thus, canopy spectral reflectance differences that
ultimately led to yield differences were apparent in the early sea-
son after the first of four split-applied N fertilizer treatments,
which occurred in mid-January in each season (Table 1). Up to
85 days after planting in both growing seasons, the RMSECVs for
yield estimates were not different for PLSR models based on 4
broad wavebands versus 701 narrow wavebands. Thereafter, the
narrow-band data demonstrated a clear advantage for yield esti-
mation compared to broad-band data. In both growing seasons,
PLSR models developed from 701 narrow wavebands best esti-
mated durum wheat yield at 125 days after planting, correspond-
ing to the period of late anthesis and early grain filling in mid-
April. Using PLSR with the genetic algorithm, yield was estimated
substantially better than PLSR alone on all spectral data collection
dates. Furthermore, RMSECV for yield estimation was improved by
allowing the algorithm to select features from the combination of
narrow-band reflectance data and first and second derivative spec-
tra. Overall, yield estimation was optimized using spectra collected
at 118 days after planting in 2010–2011 (RMSECV = 6.0%) and at
111 days after planting in 2011–2012 (RMSECV = 7.0%). For best
estimation of durum wheat yield, canopy spectral reflectance data
should be collected at flowering or shortly thereafter. The presence
of wheat heads at this time may alter the canopy spectral reflec-
tance response to provide a direct mechanism for wheat yield
prediction.

To estimate grain N content, there was no advantage to using
701 narrow spectral wavebands versus 4 broad bands until
124 days after planting in 2010–2011, whereas the advantage
was clear at 103 days after planting in 2011–2012 (Fig. 4). Using
PLSR with the genetic algorithm, the RMSECV for grain N
content estimation was lower than PLSR alone on all spectral data
collection dates. Furthermore, incorporation of first and second
derivative spectra into the algorithm provided additional improve-
ments in RMSECV in both growing seasons. In 2011–2012, estima-
tion of grain N content was optimized at 139 days after planting for
Fig. 4. Minimum root mean squared error of cross validation (RMSECV) from partial least
from canopy reflectance measured on (a) 19 dates after planting in 2010–2011 and (b) 1
with four broad-band reflectance values (PLSR1), PLSR with 701 narrow-band reflectanc
spectral reflectance features from narrow-band reflectance data (PLSR-GA1) and narrow
GA2).
several of the spectral data sets and analysis techniques (Fig. 4b).
Because this corresponded to the end of the grain filling period,
the mechanism was likely related to remobilization of nutrients
from the plant tissue to the grain. For N limited treatments, plant
tissue was depleted of N reserves more quickly than well-
fertilized treatments (Table 2). Although the optimum time for
grain N content estimation occurred later in the 2011–2012 sea-
son, the RMSECVs were less than 10% for other data collection
dates using PLSR with the genetic algorithm, indicating potential
to use canopy spectral reflectance measurements in key wave-
bands to predict grain N content at mid-season. Additionally in
the 2010–2011 season (Fig. 4a), optimum dates for grain N content
estimation were found at 100 or 120 days after planting. Because
the final two N fertilizer applications occurred at 98 and 116 days
after planting in 2010–2011 (Table 1), there is ample opportunity
to use canopy spectral reflectance data for guiding mid-season N
fertilizer applications to achieve end-of-season goals for grain N
content and related protein content. The methodologies described
herein can assist in identifying appropriate spectral features for
grain N prediction at mid-season.

3.3. Spectral feature selection

Using PLSR with the genetic algorithm, the spectral reflectance
features identified for LAI estimation were predominantly in the
NIR region in both growing seasons (Fig. 5). For the 2010–2011
data, only 2 of 13 reflectance features were identified in the visible
wavelengths: one from 350 to 415 nm and another from 500 to
631 nm. The remaining 11 features were identified in the near-
infrared region between 710 and 1050 nm. For the 2011–2012
data, several features were selected between 534 and 657 nm,
indicating visible green and red light, in addition to many features
in the near-infrared region. The contrast of visible and near-
infrared radiation mimics the purpose of many vegetation indices
designed to estimate LAI. First derivative spectra over broad visible
light wavebands, many greater than 100 nm in width, were useful
squares regression (PLSR) used to estimate durum wheat grain nitrogen (N) content
7 dates after planting in 2011–2012. Grain N content estimates were based on PLSR
e values (PLSR2), and PLSR combined with a genetic algorithm to identify relevant
-band reflectance combined with first and second spectral derivative data (PLSR-



Fig. 5. Wavebands of relevant spectral features identified using a genetic algorithm with partial least squares regression to estimate durum wheat leaf area index from
canopy spectral reflectance (REF), the first derivative of canopy spectral reflectance (FDR), and the second derivative of canopy spectral reflectance (SDR) during the (a) 2010–
2011 and (b) 2011–2012 growing seasons. A plot of the average canopy reflectance spectra (red dashed curved) is provided for reference. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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for LAI estimation in both seasons, likely highlighting the differ-
ence in slope between spectral reflectance of canopies with low
and high LAI at these wavelengths. Also, the genetic algorithm
eliminated all first derivative features between 869 and 917 nm
in both years, highlighting a lack of useful information at these
wavelengths. First derivative features resulting from the water
absorption band at 970 nm were also important for LAI estimation.
Second derivative spectral features for LAI estimation were scat-
tered throughout the VIS/NIR spectrum from 400 to 1000 nm. Sev-
eral narrow second derivative features associated with curvature
due to the red edge from 698 to 753 nm were identified.

Spectral features for estimation of canopy weight (Fig. 6) were
often grouped at specific wavebands, highlighting a main advan-
tage of the genetic algorithm to identify spectral regions of impor-
tance. For canopy spectral reflectance data, several wavebands
between 459 and 601 nm were identified for canopy weight esti-
Fig. 6. Wavebands of relevant spectral features identified using a genetic algorithm w
canopy spectral reflectance (REF), the first derivative of canopy spectral reflectance (FDR)
2011 and (b) 2011–2012 growing seasons. A plot of the average canopy reflectance spectr
to colour in this figure legend, the reader is referred to the web version of this article.)
mation in both growing seasons. These wavelengths are associated
with the transition between visible blue and green light, where
chlorophyll absorption differentially affects healthy and stressed
vegetation. For 2010–2011 data, many reflectance features were
identified between 770 and 912 nm, so NIR scattering aided
canopy weight estimation in this season. Reflectance features at
the red edge from 672 to 817 nm were more prominent for
2011–2012. First derivative features in the visible green region
centered at 550 nm were identified for canopy weight estimation
in both growing seasons, indicating the importance of changes in
slope of green light reflectance curves. Also, the genetic algorithm
identified several first derivative features between 739 and
856 nm, the transition from red edge to NIR. Optimum second
derivative features for canopy weight often covered broad wave-
bands, many greater than 120 nm in width, which highlighted
the importance of broad changes in curvature from 400 to 900 nm.
ith partial least squares regression to estimate durum wheat canopy weight from
, and the second derivative of canopy spectral reflectance (SDR) during the (a) 2010–
a (red dashed curved) is provided for reference. (For interpretation of the references
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The genetic algorithm selected relatively few features in the NIR
region (>750 nm) for estimating plant N content, particularly in the
2010–2011 growing season (Fig. 7). Reflectance features were
commonly selected between 583 and 722 nm in both growing sea-
sons, which encompasses the primary wavelengths for visible red
light absorption by chlorophyll. First and second derivative fea-
tures for plant N content were focused in the visible wavelengths,
also likely due to the effects of chlorophyll absorption on visible
light reflectance. However, first derivative features associated with
the water absorption band at 970 nm were consistently identified
in both growing seasons.

Spectral features for durum wheat yield estimation were ana-
lyzed at 124 days after planting in 2010–2011 and 130 days after
planting in 2011–2012 (Fig. 8), which corresponded to the time
of late flowering and early grain fill. There were several similarities
Fig. 7. Wavebands of relevant spectral features identified using a genetic algorithm wit
from canopy spectral reflectance (REF), the first derivative of canopy spectral reflectance
2010–2011 and (b) 2011–2012 growing seasons. A plot of the average canopy reflectan
references to colour in this figure legend, the reader is referred to the web version of th

Fig. 8. Wavebands of relevant spectral features identified using a genetic algorithm with
reflectance (REF), the first derivative of canopy spectral reflectance (FDR), and the second
growing season at 124 days after planting and the (b) 2011–2012 growing season at 13
curved) is provided for reference. (For interpretation of the references to colour in this
between the selected reflectance features in the two growing sea-
sons on these dates, including (1) narrow reflectance features
between 362 and 387 nm, (2) predominant selection of reflectance
features in the transition between blue and green light from 470 to
560 nm, and (3) several NIR reflectance features grouped between
760 and 800 nm, 915 and 938 nm, and 1018 and 1049 nm. Possible
mechanisms to explain the yield prediction capability from canopy
spectral reflectance include changes in reflectivity due to the pres-
ence of fully developed wheat heads with awns and also the effects
of remobilization of N and other nutrients from the vegetative
components to the grain. Spectral features identified for yield pre-
diction at other growth stages were less similar among the two
growing seasons (not shown). Yield can be affected by many
dynamic processes that occur between the time of spectral mea-
surement and grain harvest, which complicates yield estimation
h partial least squares regression to estimate durum wheat plant nitrogen content
(FDR), and the second derivative of canopy spectral reflectace (SDR) during the (a)
ce spectra (red dashed curved) is provided for reference. (For interpretation of the
is article.)

partial least squares regression to estimate durum wheat yield from canopy spectral
derivative of canopy spectral reflectance (SDR) collected during the (a) 2010–2011
0 days after planting. A plot of the average canopy reflectance spectra (red dashed
figure legend, the reader is referred to the web version of this article.)



Fig. 9. Wavebands of relevant spectral features identified using a genetic algorithm with partial least squares regression to estimate durum wheat grain nitrogen content
from canopy spectral reflectance (REF), the first derivative of canopy spectral reflectance (FDR), and the second derivative of canopy spectral reflectance (SDR) collected
during the (a) 2010–2011 growing season at 112 days after planting and the (b) 2011–2012 growing season at 118 days after planting. A plot of the average canopy
reflectance spectra (red dashed curved) is provided for reference. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)
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from spectral data. However, identification of consistent spectral
features at late flowering in two growing seasons (Fig. 8) combined
with improved yield estimation at that time (Fig. 3) could indicate
a real mechanism for yield estimation from spectral data. Future
efforts should aim to better understand the mechanism and fine-
tune spectral techniques for wheat yield prediction at flowering
and early grain fill.

Spectral features for durum wheat grain N content were ana-
lyzed at 112 and 118 days after planting in the 2010–2011 and
2011–2012 growing seasons, respectively (Fig. 9). These dates cor-
responded to the time of the final split fertilizer application at the
beginning of anthesis (Table 1). Thus, remote sensing data col-
lected at this time would provide the last opportunity for assis-
tance with N fertilizer management decisions. Many spectral
reflectance features were selected between 600 and 800 nm in
both growing seasons, which highlights the importance of the
red edge region for estimation of grain N content with mid-
season canopy spectral reflectance. Similar to grain yield estima-
tion, a complicating factor for estimation of grain N content is that
many processes affect grain N outcomes following spectral mea-
surements at mid-season. However, the results suggest that final
grain N content can be estimated reasonably (RMSECV < 10%,
Fig. 4) by developing PLSR models from relevant spectral features
at mid-season (Fig. 9). Future efforts should fine-tune spectral
techniques for prediction of grain N content at mid-season and
expand the analysis to include estimation of grain protein.

4. Conclusions

The study demonstrated clear advantages to using hyperspec-
tral data from spectroradiometers to estimate wheat biophysical
traits. The PLSR models based on full-spectrum, contiguous,
narrow-band hyperspectral reflectance data provided better esti-
mates of wheat traits than PLSR models using data from four or
eight broad wavebands that mimicked two commercial multispec-
tral radiometers. However, the hyperspectral data was also shown
to contain excess data of little value for trait estimation, because a
genetic algorithm was able to select less than 25 spectral features
from 701 narrow wavebands, which led to substantial improve-
ment in trait estimates. Thus, full-spectrum, contiguous, narrow-
band reflectance data is not necessarily better than non-
contiguous, broad-band data. Rather, the former can be used to
determine the optimum composition of the latter for improved
estimation of crop traits. Future efforts should focus on fine-
tuning methodologies, via genetic algorithm or otherwise, to prune
hyperspectral data sets of irrelevant information prior to PLSR
model development.

Derivative spectra calculated from hyperspectral reflectance
data was advantageous to trait estimation, but only when the
genetic algorithm was used to extract relevant spectral derivative
features from the full-spectrum data. Explicit comparisons of the
entire spectral derivative data set with its corresponding narrow-
band reflectance data demonstrated little advantage to the former.
If derivative spectra is deemed necessary for a given sensing appli-
cation, a hyperspectral sensor must be deployed to produce the
narrow-band, contiguous reflectance data needed for derivative
calculations. Otherwise, data from hyperspectral instruments are
mainly useful for exploratory analyses with a goal to design sim-
pler radiometers for crop reflectance sensing applications in speci-
fic wavebands. As discussed herein, one approach uses a genetic
algorithm to improve crop trait estimation by extracting relevant
information from full-spectrum data. Future efforts can use this
approach to finalize sensor designs or select band-pass filters for
improved estimation of specific crop traits.

Durum wheat yield and grain N content were estimated from
mid-season canopy spectral reflectance data with RMSECV less
than 9.4%. Future efforts will apply the present findings to improve
current proximal sensing techniques for N fertilizer management
in durum wheat. With further development, these techniques will
be useful for making mid-season N fertilizer management deci-
sions, optimizing durum wheat grain protein content for maxi-
mum grower profit, and minimizing N losses to the environment.
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